A globally convergent descent method for nonsmooth variational inequalities

نویسندگان

  • Barbara Panicucci
  • Massimo Pappalardo
  • Mauro Passacantando
چکیده

We propose a descent method via gap functions for solving nonsmooth variational inequalities with a locally Lipschitz operator. Assuming monotone operator (not necessarily strongly monotone) and bounded domain, we show that the method with an Armijo-type line search is globally convergent. Finally, we report some numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Descent Method for Nonsmooth Variational Inequalities via Regularization

in this paper we propose a descent method for solving variational inequality problems where the underlying operator is nonsmooth, locally Lipschitz, and monotone over a closed, convex feasible set. The idea is to combine a descent method for variational inequality problems whose operators are nonsmooth, locally Lipschitz, and strongly monotone, with the Tikonov-Browder regularization technique....

متن کامل

Solving box constrained variational inequalities by using the natural residual with D-gap function globalization

We present a new method for the solution of the box constrained variational inequality problem, BVIP for short. Basically, this method is a nonsmooth Newton method applied to a reformulation of BVIP as a system of nonsmooth equations involving the natural residual. The method is globalized by using the D-gap function. We show that the proposed algorithm is globally and fast locally convergent. ...

متن کامل

Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities

The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise from the nonlinear complementarity problem, the variational inequality problem or other problems, can be regarded as a variant of the smoothing method. At the kth step, the nonsmooth function F is approximated by a smooth function f(·, εk), and the derivative of f(·, εk) at xk is used as the Newto...

متن کامل

A Note on a Globally Convergent Newton Method for Solving Monotone Variational Inequalities

R esum e. Il est bien connu que la m ethode de Newton, lorsqu'appliqu ee a un probl eme d'in equation variationnelle fortement monotone, converge localement vers la solution de l'in equation, et que l'ordre de convergence est quadratique. Dans cet article nous mon-trons que la direction de Newton constitue une direction de descente pour un objectif non dii erentiable et non convexe, et ceci m^ ...

متن کامل

A Descent-projection Method for Solving Monotone Structured Variational Inequalities

In this paper, a new descent-projection method with a new search direction for monotone structured variational inequalities is proposed. The method is simple, which needs only projections and some function evaluations, so its computational load is very tiny. Under mild conditions on the problem’s data, the method is proved to converges globally. Some preliminary computational results are also r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2009